Package: kssa (via r-universe)

August 20, 2024

Title Known Sub-Sequence Algorithm

Version 0.0.1

Maintainer Iván Felipe Benavides <pipeben@gmail.com>

Description Implements the Known Sub-Sequence Algorithm <doi:10.1016/j.aaf.2021.12.013>, which helps to automatically identify and validate the best method for missing data imputation in a time series. Supports the comparison of multiple state-of-the-art algorithms.

License AGPL (>= 3)

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.0

URL https://github.com/pipeben/kssa

BugReports https://github.com/pipeben/kssa/issues

Depends R (>= 4.0)

Suggests covr, testthat (>= 3.0.0)

Config/testthat/edition 3

Imports magrittr, ggplot2, rlang, methods, forecast, imputeTS, stats, zoo, Metrics, dplyr, missMethods

Date 2022-06-14

Repository https://pipeben.r-universe.dev

RemoteUrl https://github.com/pipeben/kssa

RemoteRef HEAD

RemoteSha 774a8a6b91d1da6fc1b9bd8bd668bf0f05552f3d

Contents

get_imputations	 2
kssa	 3
kssa_plot	 5

Index

get_imputations get_imputations function

Description

Function to get imputations from methods compared by kssa

Usage

```
get_imputations(x_ts, methods = "all", seed = 1234)
```

Arguments

x_ts	A ts object with missing data to be imputed
methods	A string or string vector indicating the method or methods
seed	Numeric. Any number

Value

A list of imputed time series with the selected methods

Examples

```
# Get imputed values for airgap_na_ts with the methods of
# Create 20% random missing data in tsAirgapComplete time series from imputeTS
set.seed(1234)
library("imputeTS")
library("kssa")
airgap_na <- missMethods::delete_MCAR(as.data.frame(tsAirgapComplete), 0.2)
# Convert co2_na to time series object
airgap_na_ts <- ts(airgap_na, start = c(1959, 1), end = c(1997, 12), frequency = 12)
my_imputations <- get_imputations(airgap_na_ts, methods = "all")
# my_imputations contains the imputed time series with all methods.
# Access it and choose the one from the best method for your purposes
my_imputations$seadec
```

plot.ts(my_imputations\$seadec)

7

kssa

Description

Run the Known Sub-Sequence Algorithm to compare the performance of imputation methods on a time series of interest

Usage

```
kssa(
 x_ts,
 start_methods,
 actual_methods,
 segments = 5,
 iterations = 10,
 percentmd = 0.2,
 seed = 1234
)
```

Arguments

x_ts	Time series object ts containing missing data (NA)	
start_methods	String vector. The method or methods to start the algorithm. Same as for ac- tual_methods	
actual_methods	ds The imputation methods to be compared and validated. It can be a string vecto containing the following 11 imputation methods:	
	 "all" - compare among all methods automatically - Default "auto.arima" - State space representation of an ARIMA model "StructTS" - State space representation of a structural model "seadec" - Seasonal decomposition with Kalman smoothing "linear_i" - Linear interpolation "spline_i" - Spline interpolation "stine_i" - Stineman interpolation "simple_ma" - Simple moving average "linear_ma" - Linear moving average "locf" - Last observation carried forward "stl" - Seasonal and trend decomposition with Loess For further details on these imputation methods please check packages imputeTS and forecast	
segments	Integer. Into how many segments the time series will be divided	
iterations	Integer. How many iterations to run	

 percentmd
 Numeric. Percentage of missing data. Must match with the true percentage of missing data in x_ts

 seed
 Numeric. Random seed to choose

Value

A list of results to be plotted with function kssa_plot for easy interpretation

References

Benavides, I. F., Santacruz, M., Romero-Leiton, J. P., Barreto, C., & Selvaraj, J. J. (2022). Assessing methods for multiple imputation of systematic missing data in marine fisheries time series with a new validation algorithm. Aquaculture and Fisheries. Full text publication.

Examples

```
# Create 20% random missing data in tsAirgapComplete time series from imputeTS
set.seed(1234)
library("kssa")
library("imputeTS")
airgap_na <- missMethods::delete_MCAR(as.data.frame(tsAirgapComplete), 0.2)</pre>
# Convert co2_na to time series object
airgap_na_ts <- ts(airgap_na, start = c(1959, 1), end = c(1997, 12), frequency = 12)
# Apply the kssa algorithm with 5 segments,
# 10 iterations, 20% of missing data, and
# compare among all available methods in the package.
# Remember that percentmd must match with
# the real percentage of missing data in the
# input co2_na_ts time series
results_kssa <- kssa(airgap_na_ts,</pre>
  start_methods = "all",
  actual_methods = "all",
  segments = 5,
  iterations = 10,
  percentmd = 0.2
)
# Print and check results
results_kssa
# For an easy interpretation of kssa results
# please use function kssa_plot
```

kssa_plot

Description

Function to plot the results of kssa for easy interpretation

Usage

```
kssa_plot(results, type, metric)
```

Arguments

results	An object with results produced with function kssa
type	A character value with the type of plot to show. It can be "summary" or "complete".
metric	A character with the performance metric to be plotted. It can be "rmse", "mase," "cor", or "smape"
	• "rmse" - Root Mean Squared Error (default choice)
	"mase" - Mean Absolute Scaled Error
	 "smape" - Symmetric Mean Absolute Percentage Error
	 "cor" - Pearson correlation coefficient

For further details on these metrics please check package Metrics

Value

A plot of kssa results in which imputation methods are ordered from lower to higher (left to right) error.

Examples

Plot the results obtained in the example from function kssa

```
# Create 20% random missing data in tsAirgapComplete time series from imputeTS
set.seed(1234)
library("kssa")
library("imputeTS")
airgap_na <- missMethods::delete_MCAR(as.data.frame(tsAirgapComplete), 0.2)</pre>
```

```
# Convert co2_na to time series object
airgap_na_ts <- ts(airgap_na, start = c(1959, 1), end = c(1997, 12), frequency = 12)</pre>
```

```
# Apply the kssa algorithm with 5 segments,
```

```
# 10 iterations, 20% of missing data, and
```

compare among all available methods in the package.

- # Remember that percentmd must match with
- # the real percentage of missing data in the

```
# input co2_na_ts time series
results_kssa <- kssa(airgap_na_ts,
    start_methods = "all",
    actual_methods = "all",
    segments = 5,
    iterations = 10,
    percentmd = 0.2
)
kssa_plot(results_kssa, type = "complete", metric = "rmse")
# Conclusion: Since kssa_plot is ordered from lower to
# higher error (left to right), method 'linear_i' is the best to
# impute missing data in airgap_na_ts. Notice that method 'locf' is the worst
# To obtain imputations with the best method, or any method of preference
# please use function get_imputations</pre>
```

6

Index

forecast, 3
get_imputations, 2
imputeTS, 3
kssa, 3, 5
kssa_plot, 4, 5
ts, 3